S11

INTELLIGENT MODEL

MAKE
EVERY DROP OF
WATER MORE VALUABLE

S11

RESIDENTIAL ULTRASONIC WATER METER

LXC 15-40

APPLICATION

S11 LXC 15-40 Ultrasonic water meter is designed for accurate measurement of cold water consumption in households, apartment buildings, and commercial premises.

- · Optional remote valve control to limit water use (DN15-25);
- · No moving parts design to reduce wear;
- Reliable design supports long-term stable operation;
- Record total volume as small as 1mL;
- 9 digits LCD. Total volume and instantaneous flow rate indication;
- ·Low power consumption circuit board design extends service life;
- •Battery compartment with enough space reserved, ER34615 battery (optional);
- Ready for AMR with wired and wireless communication technologies.

TECHNICAL FEATURES

- · No measurement of air;
- Nominal flow 2.5/4.0/6.3/10/16 m³/h;
- Q3/Q1 = R250/400(optional);
- · Supports installation at any position or angle;
- IP68 suitable for outdoor installations;
- Temperature class T30, T50, T70(customizable);
- Environment class E1/M1;
- Nominal pressure PN16;
- · Bi-directional flow measurements;
- U5/D3, straight pipe sections required before or after the meter;
- · Copper or stainless steel body;
- Display with error and alarm codes including leakage detection.

AMR READY

- · Wired:RS485 modbus;
- · Wired:Pulse:
- Wireless:LoRa,LoRaWAN (EU863-870, AS923, AU915-928, US902-928, IN865-867 channel plans);
- Wireless:NB-IoT (CoAP);
- Wireless:GPRS(2G/4G);
- · Infrared reading.

WIRELESS AMR INTERFACES

LCD INDICATIONS AND ALARMS

TECHNICAL FEATURES

Nominal diameter		mm	1	5	2	0	2	5	3	2	4	0
Overload flow rate	Q4	m^3/h	3,125		5		7.875		12.5		20	
Nominal flow	Q3	m³/h	2,5		4		6.3		10		16	
Transitional flow	Q2	L/h	16	10	25.6	16	40.32	25.2	64	40	102.4	64
Min flow	Q1	L/h	10	6.25	6.25	10	25.2	15.75	40	25	64	40
Measuring range	Q3/Q1		R250	R400	R250	R400	R250	R400	R250	R400	R250	R400
Minimum reading		mL 999.99999										
Max reading		L 999999.999										
Power supply		V Built-in lithium battery DC 3.6V										

Caliber	Unit	DN15	DN20	DN25	DN32	DN40
L	mm	165	195	225	180	200
L1	mm	260	300	346	305	330
W	mm	83	83	83	83	83
Н	mm	135	135	138	140	142
Meter thread		$R^{\frac{1}{2}}$	$R^{\frac{3}{4}}$	R1	$R1\frac{1}{4}$	$R1\frac{1}{2}$
Connecting Pipe thread (D)		$G_{\overline{4}}^{3}B$	G1B	$Gl\frac{1}{4}B$	$Gl\frac{1}{2}B$	G2B

Make every drop of water more valuable

